Skip to main content
U.S. flag

An official website of the United States government

Researchers find molecular similarities among head and neck, lung, and bladder cancers

Researchers at the National Institute on Deafness and Other Communication Disorders (NIDCD), one of the National Institutes of Health (NIH), working as part of a team of scientists with The Cancer Genome Atlas (TCGA) Network, have identified a characteristic molecular pattern shared by head and neck, lung, and some bladder cancers. The molecular profile offers information that could help physicians diagnose and develop new treatment strategies for these diseases.

The results of the study appeared onlineThis link will open a non-federal website in a new window. August 7 in the journal Cell. TCGA, a joint venture of the NIH’s National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), was established to comprehensively characterize the genomes of more than 30 types of cancer.

“We need to better understand head and neck cancer and  find ways to treat it so we can preserve patients’ voices and improve their quality of life,” said Carter Van Waes, M.D., Ph.D., clinical director and chief of the NIDCD Head and Neck Surgery Branch. He and Zhong Chen, M.D., Ph.D., also part of the tumor biology section at the NIDCD, were part of the research team. Currently, about 320,000 Americans have trouble communicating because of treatments they have undergone for head and neck cancers.

Cancer therapies are usually based on where the cancer originated, such as breast, lung or head and neck. But research has revealed that tumors are diverse at the molecular level and that these differences can affect their response to medicines. Some tumors from the same site have distinct molecular characteristics and respond to differing medicines, while tumors from different sites may share molecular features and respond to similar treatments.

In the current study, the researchers examined the molecular characteristics of 3,527 samples representing a dozen different types of cancer. Their aim was to determine if any patterns would emerge and if so, to categorize the samples according to these patterns.

By collecting and analyzing five types of data, including DNA and RNA sequences and gene copy numbers, the researchers identified 11 molecular subgroups. Most of the cancer types had a molecular profile linked to their original tissue of origin.

The situation was slightly different for head and neck cancers, however. Virtually all the samples in this class fell into the same molecular subgroup. In addition, most of the lung cancer samples, as well as some of the bladder cancer samples also fell into this group.

The researchers also found that the cancers in this subgroup shared certain mutations and chromosome changes, suggesting that they may be susceptible to similar treatments. This data could help physicians who are treating head and neck cancer to base a patient’s treatment on his or her tumor’s genetic profile rather than where the cancer originated.

“This work highlights the value of taking a broad approach to molecular characterization of tumors,” said Dr. Chen. “Only by performing such a comprehensive analysis were we able to uncover a link between head and neck, lung, and bladder cancers. In the future, we may be able to target the molecular defects identified in this study and develop medicines that are effective for different types of cancer.”

More information on TCGA is available at link will open a non-federal website in a new window..

Lead authors for this study include Katherine A. Hoadley of the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Christina Yau, Buck Institute for Research on Aging, Novato, California; Denise M. Wolf, Department of Laboratory Medicine, University of California San Francisco; and Andrew D. Cherniack, The Eli and Edythe Broad Institute of Harvard and Massachusetts Institute of Technology. Senior authors are Christopher C. Benz, Buck Institute for Research on Aging, Novato, California; Charles M. Perou, University of North Carolina at Chapel Hill; and Joshua M. Stuart, University of California, Santa Cruz.

This study was supported by multiple NIH grants from NCI and NHGRI as well as NIDCD intramural projects ZIA- DC-000073 and ZIA-DC-000074.

Last Updated Date: