You are here

Appendix E: Bibliography

  1. Blackwell DL, Lucas JW, Clarke TC. Summary health statistics for U.S. adults: National Health Interview Survey, 2012. National Center for Health Statistics. Vital Health Stat 10(260). 2014 Contract No.: 260.
  2. Ward BK, Agrawal Y, Hoffman HJ, Carey JP, Della Santina CC. Prevalence and impact of bilateral vestibular hypofunction: results from the 2008 US National Health Interview Survey. JAMA Otolaryngol Head Neck Surg. 2013;139(8):803–10. doi: 10.1001/jamaoto.2013.3913. PubMed PMID: 23949355; PMCID: PMC4839981.
  3. Li CM, Hoffman HJ, Ward BK, Cohen HS, Rine RM. Epidemiology of Dizziness and Balance Problems in Children in the United States: A Population-Based Study. J Pediatr 2016;171:240–7 e3. doi: 10.1016/j.jpeds.2015.12.002. PubMed PMID: 26826885.
  4. CDC. Identifying infants with hearing loss - United States, 1999–2007. MMWR Morb Mortal Wkly Rep. 2010;59(8):220–3. PubMed PMID: 20203554.
  5. Vohr B. Overview: Infants and children with hearing loss-part I. Ment Retard Dev Disabil Res Rev. 2003;9(2):62–4. doi: 10.1002/mrdd.10070. PubMed PMID: 12784222.
  6. Zelaya CE LJ, Hoffman HJ. Self-reported hearing trouble in adults aged 18 and over: United States, 2014. NCHS data brief, no 214. 2015.
  7. Hoffman HJ, Ko C-W, Themann CL, Dillon CF, Franks JR. Reducing noise-induced hearing loss (NIHL) in adults to achieve U.S. Healthy People 2010 goals. Am J Epidemiol. 2006;(Suppl S); 163(11):S122.
  8. CDC/NHANES. Based on calculations performed by NIDCD Epidemiology and Statistics Program staff: (1) using data from the 1999–2010 National Health and Nutrition Examination Survey (NHANES); (2) applying the definition of disabling hearing loss used by the 2010 Global Burden of Disease Expert Hearing Loss Team (hearing loss of 35 decibels or more in the better ear, the level at which adults could generally benefit from hearing aids) 2010.
  9. Kawashima Y, Geleoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest. 2011;121(12):4796–809. doi: 10.1172/JCI60405. PubMed PMID: 22105175; PMCID: PMC3223072.
  10. Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B. TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia. Cell Rep. 2015;12(10):1606–17. doi: 10.1016/j.celrep.2015.07.058. PubMed PMID: 26321635; PMCID: PMC4569002.
  11. Liedtke W. A precisely defined role for the tip link-associated protein TMIE in the mechanoelectrical transduction channel complex of inner ear hair cells. Neuron. 2014;84(5):889–91. doi: 10.1016/j.neuron.2014.11.015. PubMed PMID: 25475183.
  12. Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H, Clemens-Grisham R, Barr-Gillespie PG, Nicolson T. Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A. 2014;111(35):12907–12. doi: 10.1073/pnas.1402152111. PubMed PMID: 25114259; PMCID: PMC4156717.
  13. Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron. 2013;79(3):504–15. doi: 10.1016/j.neuron.2013.06.019. PubMed PMID: 23871232; PMCID: PMC3827726.
  14. Zhao B, Wu Z, Grillet N, Yan L, Xiong W, Harkins-Perry S, Muller U. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron. 2014;84(5):954–67. doi: 10.1016/j.neuron.2014.10.041. PubMed PMID: 25467981; PMCID: PMC4258123.
  15. Xiong W, Grillet N, Elledge HM, Wagner TF, Zhao B, Johnson KR, Kazmierczak P, Muller U. TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell. 2012;151(6):1283–95. doi: 10.1016/j.cell.2012.10.041. PubMed PMID: 23217710; PMCID: PMC3522178.
  16. Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557. doi: 10.1038/ncomms9557. PubMed PMID: 26469390; PMCID: PMC4634134.
  17. Cai T, Jen HI, Kang H, Klisch TJ, Zoghbi HY, Groves AK. Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor. J Neurosci. 2015;35(14):5870–83. doi: 10.1523/JNEUROSCI.5083–14.2015. PubMed PMID: 25855195; PMCID: PMC4388939.
  18. Scheffer DI, Shen J, Corey DP, Chen ZY. Gene Expression by Mouse Inner Ear Hair Cells during Development. J Neurosci. 2015;35(16):6366–80. doi: 10.1523/JNEUROSCI.5126–14.2015. PubMed PMID: 25904789; PMCID: PMC4405555.
  19. Shen J, Scheffer DI, Kwan KY, Corey DP. SHIELD: an integrative gene expression database for inner ear research. Database (Oxford). 2015;2015:bav071. doi: 10.1093/database/bav071. PubMed PMID: 26209310; PMCID: PMC4513695.
  20. Waldhaus J, Durruthy-Durruthy R, Heller S. Quantitative High-Resolution Cellular Map of the Organ of Corti. Cell Rep. 2015;11(9):1385–99. doi: 10.1016/j.celrep.2015.04.062. PubMed PMID: 26027927; PMCID: PMC4465070.
  21. Elkon R, Milon B, Morrison L, Shah M, Vijayakumar S, Racherla M, Leitch CC, Silipino L, Hadi S, Weiss-Gayet M, Barras E, Schmid CD, Ait-Lounis A, Barnes A, Song Y, Eisenman DJ, Eliyahu E, Frolenkov GI, Strome SE, Durand B, Zaghloul NA, Jones SM, Reith W, Hertzano R. RFX transcription factors are essential for hearing in mice. Nat Commun. 2015;6:8549. doi: 10.1038/ncomms9549. PubMed PMID: 26469318; PMCID: PMC4634137.
  22. Shin JB, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, Wilmarth PA, Choi D, David LL, Auer M, Barr-Gillespie PG. Molecular architecture of the chick vestibular hair bundle. Nat Neurosci. 2013;16(3):365–74. doi: 10.1038/nn.3312. PubMed PMID: 23334578; PMCID: PMC3581746.
  23. Wilmarth PA, Krey JF, Shin JB, Choi D, David LL, Barr-Gillespie PG. Hair-bundle proteomes of avian and mammalian inner-ear utricles. Sci Data. 2015;2:150074. doi: 10.1038/sdata.2015.74. PubMed PMID: 26645194; PMCID: PMC4672683.
  24. Francis SP, Krey JF, Krystofiak ES, Cui R, Nanda S, Xu W, Kachar B, Barr-Gillespie PG, Shin JB. A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci. 2015;35(5):1999–2014. doi: 10.1523/JNEUROSCI.3449–14.2015. PubMed PMID: 25653358; PMCID: PMC4315831.
  25. Chai R, Kuo B, Wang T, Liaw EJ, Xia A, Jan TA, Liu Z, Taketo MM, Oghalai JS, Nusse R, Zuo J, Cheng AG. Wnt signaling induces proliferation of sensory precursors in the postnatal mouse cochlea. Proc Natl Acad Sci U S A. 2012;109(21):8167–72. doi: 10.1073/pnas.1202774109. PubMed PMID: 22562792; PMCID: PMC3361451.
  26. Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci. 2012;32(28):9639–48. doi: 10.1523/JNEUROSCI.1064–12.2012. PubMed PMID: 22787049; PMCID: PMC3417821.
  27. Koehler KR, Hashino E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc. 2014;9(6):1229–44. doi: 10.1038/nprot.2014.100. PubMed PMID: 24784820.
  28. Lentz JJ, Jodelka FM, Hinrich AJ, McCaffrey KE, Farris HE, Spalitta MJ, Bazan NG, Duelli DM, Rigo F, Hastings ML. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med. 2013;19(3):345–50. doi: 10.1038/nm.3106. PubMed PMID: 23380860; PMCID: PMC3657744.
  29. Bermingham-McDonogh O, Reh TA. Regulated reprogramming in the regeneration of sensory receptor cells. Neuron. 2011;71(3):389–405. doi: 10.1016/j.neuron.2011.07.015. PubMed PMID: 21835338; PMCID: PMC4403668.
  30. Conde de Felipe MM, Feijoo Redondo A, Garcia-Sancho J, Schimmang T, Duran Alonso MB. Cell- and gene-therapy approaches to inner ear repair. Histol Histopathol. 2011;26(7):923–40. PubMed PMID: 21630222.
  31. Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, Abbas PJ, Holt JR, Smith RJ. RNA Interference Prevents Autosomal-Dominant Hearing Loss. Am J Hum Genet. 2016. doi: 10.1016/j.ajhg.2016.03.028. PubMed PMID: 27236922.
  32. Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol. 2014;111(3):552–64. doi: 10.1152/jn.00184.2013. PubMed PMID: 24198321; PMCID: PMC3921399.
  33. Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015;330(Pt B):191–9. doi: 10.1016/j.heares.2015.02.009. PubMed PMID: 25769437; PMCID: PMC4567542.
  34. Liberman MC. Hidden Hearing Loss. Sci Am. 2015;313(2):48–53. PubMed PMID: 26349143.
  35. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33(34):13686–94. doi: 10.1523/JNEUROSCI.1783–13.2013. PubMed PMID: 23966690; PMCID: PMC3755715.
  36. Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110(3):577–86. doi: 10.1152/jn.00164.2013. PubMed PMID: 23596328; PMCID: PMC3742994.
  37. Viana LM, O'Malley JT, Burgess BJ, Jones DD, Oliveira CA, Santos F, Merchant SN, Liberman LD, Liberman MC. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res. 2015;327:78–88. doi: 10.1016/j.heares.2015.04.014. PubMed PMID: 26002688; PMCID: PMC4554812.
  38. Flores EN, Duggan A, Madathany T, Hogan AK, Marquez FG, Kumar G, Seal RP, Edwards RH, Liberman MC, Garcia-Anoveros J. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr Biol. 2015;25(5):606–12. doi: 10.1016/j.cub.2015.01.009. PubMed PMID: 25639244; PMCID: PMC4348215.
  39. Liu C, Glowatzki E, Fuchs PA. Unmyelinated type II afferent neurons report cochlear damage. Proc Natl Acad Sci U S A. 2015;112(47):14723–7. doi: 10.1073/pnas.1515228112. PubMed PMID: 26553995; PMCID: PMC4664349.
  40. Kuhn S, Johnson SL, Furness DN, Chen J, Ingham N, Hilton JM, Steffes G, Lewis MA, Zampini V, Hackney CM, Masetto S, Holley MC, Steel KP, Marcotti W. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells. Proc Natl Acad Sci U S A. 2011;108(6):2355–60. doi: 10.1073/pnas.1016646108. PubMed PMID: 21245307; PMCID: PMC3038748.
  41. Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, Olavarrieta L, Aguirre LA, del Castillo I, Steel KP, Dalmay T, Moreno F, Moreno-Pelayo MA. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet. 2009;41(5):609–13. doi: 10.1038/ng.355. PubMed PMID: 19363479.
  42. Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J, 2nd, Scherer S, Scheetz TE, Smith RJ. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(49):21104–9. doi: 10.1073/pnas.1012989107. PubMed PMID: 21078986; PMCID: PMC3000272.
  43. Sloan-Heggen CM, Babanejad M, Beheshtian M, Simpson AC, Booth KT, Ardalani F, Frees KL, Mohseni M, Mozafari R, Mehrjoo Z, Jamali L, Vaziri S, Akhtarkhavari T, Bazazzadegan N, Nikzat N, Arzhangi S, Sabbagh F, Otukesh H, Seifati SM, Khodaei H, Taghdiri M, Meyer NC, Daneshi A, Farhadi M, Kahrizi K, Smith RJ, Azaiez H, Najmabadi H. Characterising the spectrum of autosomal recessive hereditary hearing loss in Iran. J Med Genet. 2015;52(12):823–9. doi: 10.1136/jmedgenet–2015–103389. PubMed PMID: 26445815; PMCID: PMC4733363.
  44. Alford RL, Arnos KS, Fox M, Lin JW, Palmer CG, Pandya A, Rehm HL, Robin NH, Scott DA, Yoshinaga-Itano C, Loss AWGoUoGEGftEDoCH, Professional P, Guidelines C. American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014;16(4):347–55. doi: 10.1038/gim.2014.2. PubMed PMID: 24651602.
  45. Kimberling WJ, Hildebrand MS, Shearer AE, Jensen ML, Halder JA, Trzupek K, Cohn ES, Weleber RG, Stone EM, Smith RJ. Frequency of Usher syndrome in two pediatric populations: Implications for genetic screening of deaf and hard of hearing children. Genet Med. 2010;12(8):512–6. doi: 10.1097/GIM.0b013e3181e5afb8. PubMed PMID: 20613545; PMCID: PMC3131500.
  46. Declau F, Boudewyns A, Van den Ende J, Peeters A, van den Heyning P. Etiologic and audiologic evaluations after universal neonatal hearing screening: analysis of 170 referred neonates. Pediatrics. 2008;121(6):1119–26. doi: 10.1542/peds.2007–1479. PubMed PMID: 18519481.
  47. Choi BY, Park G, Gim J, Kim AR, Kim BJ, Kim HS, Park JH, Park T, Oh SH, Han KH, Park WY. Diagnostic application of targeted resequencing for familial nonsyndromic hearing loss. PLoS One. 2013;8(8):e68692. doi: 10.1371/journal.pone.0068692. PubMed PMID: 23990876; PMCID: PMC3750053.
  48. Vona B, Muller T, Nanda I, Neuner C, Hofrichter MA, Schroder J, Bartsch O, Lassig A, Keilmann A, Schraven S, Kraus F, Shehata-Dieler W, Haaf T. Targeted next-generation sequencing of deafness genes in hearing-impaired individuals uncovers informative mutations. Genet Med. 2014;16(12):945–53. doi: 10.1038/gim.2014.65. PubMed PMID: 24875298; PMCID: PMC4262760.
  49. Jayawardena AD, Shearer AE, Smith RJ. Sensorineural Hearing Loss: A Changing Paradigm for Its Evaluation. Otolaryngol Head Neck Surg. 2015;153(5):843–50. doi: 10.1177/0194599815596727. PubMed PMID: 26216887; PMCID: PMC4730883.
  50. Sloan-Heggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, Ephraim SS, Shibata SB, Booth KT, Campbell CA, Ranum PT, Weaver AE, Black-Ziegelbein EA, Wang D, Azaiez H, Smith RJ. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet. 2016;135(4):441–50. doi: 10.1007/s00439–016–1648–8. PubMed PMID: 26969326; PMCID: PMC4796320.
  51. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR. Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron. 2012;75(2):283–93. doi: 10.1016/j.neuron.2012.05.019. PubMed PMID: 22841313; PMCID: PMC3408581.
  52. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, Schneider BL, Aebischer P, Holt JR. Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med. 2015;7(295):295ra108. doi: 10.1126/scitranslmed.aab1996. PubMed PMID: 26157030.
  53. Di Domenico M, Ricciardi C, Martone T, Mazzarella N, Cassandro C, Chiarella G, D'Angelo L, Cassandro E. Towards gene therapy for deafness. J Cell Physiol. 2011;226(10):2494–9. doi: 10.1002/jcp.22617. PubMed PMID: 21792906.
  54. Ou HC, Keating S, Wu P, Simon JA, Raible DW, Rubel EW. Quinoline ring derivatives protect against aminoglycoside-induced hair cell death in the zebrafish lateral line. J Assoc Res Otolaryngol. 2012;13(6):759–70. doi: 10.1007/s10162–012–0353–0. PubMed PMID: 23053627; PMCID: PMC3505584.
  55. Ou H, Simon JA, Rubel EW, Raible DW. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear Res. 2012;288(1–2):58–66. doi: 10.1016/j.heares.2012.01.009. PubMed PMID: 22310494; PMCID: PMC3371178.
  56. Stawicki TM, Esterberg R, Hailey DW, Raible DW, Rubel EW. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front Cell Neurosci. 2015;9:46. doi: 10.3389/fncel.2015.00046. PubMed PMID: 25741241; PMCID: PMC4332341.
  57. Thomas AJ, Wu P, Raible DW, Rubel EW, Simon JA, Ou HC. Identification of small molecule inhibitors of cisplatin-induced hair cell death: results of a 10,000 compound screen in the zebrafish lateral line. Otol Neurotol. 2015;36(3):519–25. doi: 10.1097/MAO.0000000000000487. PubMed PMID: 25687728; PMCID: PMC4332566.
  58. Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano HJ, Okano H, Edge AS. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron. 2013;77(1):58–69. doi: 10.1016/j.neuron.2012.10.032. PubMed PMID: 23312516; PMCID: PMC3573859.
  59. Deal JA, Sharrett AR, Albert MS, Coresh J, Mosley TH, Knopman D, Wruck LM, Lin FR. Hearing impairment and cognitive decline: a pilot study conducted within the atherosclerosis risk in communities neurocognitive study. Am J Epidemiol. 2015;181(9):680–90. doi: 10.1093/aje/kwu333. PubMed PMID: 25841870; PMCID: PMC4408947.
  60. Whitson HE, Lin FR. Hearing and vision care for older adults: sensing a need to update Medicare policy. JAMA. 2014;312(17):1739–40. doi: 10.1001/jama.2014.13535. PubMed PMID: 25369486; PMCID: PMC4260264.
  61. Van Laer L, Huyghe JR, Hannula S, Van Eyken E, Stephan DA, Maki-Torkko E, Aikio P, Fransen E, Lysholm-Bernacchi A, Sorri M, Huentelman MJ, Van Camp G. A genome-wide association study for age-related hearing impairment in the Saami. Eur J Hum Genet. 2010;18(6):685–93. doi: 10.1038/ejhg.2009.234. PubMed PMID: 20068591; PMCID: PMC2987344.
  62. Wan G, Gomez-Casati ME, Gigliello AR, Liberman MC, Corfas G. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife. 2014;3. doi: 10.7554/eLife.03564. PubMed PMID: 25329343; PMCID: PMC4227045.
  63. Kurabi A, Pak K, Ryan AF, Wasserman SI. Innate Immunity: Orchestrating Inflammation and Resolution of Otitis Media. Curr Allergy Asthma Rep. 2016;16(1):6. doi: 10.1007/s11882–015–0585–2. PubMed PMID: 26732809.
  64. Kerschner JE, Hong W, Taylor SR, Kerschner JA, Khampang P, Wrege KC, North PE. A novel model of spontaneous otitis media with effusion (OME) in the Oxgr1 knock-out mouse. Int J Pediatr Otorhinolaryngol. 2013;77(1):79–84. doi: 10.1016/j.ijporl.2012.09.037. PubMed PMID: 23200873; PMCID: PMC3535456.
  65. Eutsey RA, Hiller NL, Earl JP, Janto BA, Dahlgren ME, Ahmed A, Powell E, Schultz MP, Gilsdorf JR, Zhang L, Smith A, Murphy TF, Sethi S, Shen K, Post JC, Hu FZ, Ehrlich GD. Design and validation of a supragenome array for determination of the genomic content of Haemophilus influenzae isolates. BMC Genomics. 2013;14:484. doi: 10.1186/1471–2164–14–484. PubMed PMID: 23865594; PMCID: PMC3723446.
  66. Novotny LA, Jurcisek JA, Ward MO, Jr., Jordan ZB, Goodman SD, Bakaletz LO. Antibodies against the majority subunit of type IV Pili disperse nontypeable Haemophilus influenzae biofilms in a LuxS-dependent manner and confer therapeutic resolution of experimental otitis media. Mol Microbiol. 2015;96(2):276–92. doi: 10.1111/mmi.12934. PubMed PMID: 25597921; PMCID: PMC4423401.
  67. Murphy TF. Vaccines for Nontypeable Haemophilus influenzae: the Future Is Now. Clin Vaccine Immunol. 2015;22(5):459–66. doi: 10.1128/CVI.00089–15. PubMed PMID: 25787137; PMCID: PMC4412935.
  68. Yildirim I, Shea KM, Pelton SI. Pneumococcal Disease in the Era of Pneumococcal Conjugate Vaccine. Infect Dis Clin North Am. 2015;29(4):679–97. doi: 10.1016/j.idc.2015.07.009. PubMed PMID: 26610421; PMCID: PMC4662776.
  69. Khoo X, Simons EJ, Chiang HH, Hickey JM, Sabharwal V, Pelton SI, Rosowski JJ, Langer R, Kohane DS. Formulations for trans-tympanic antibiotic delivery. Biomaterials. 2013;34(4):1281–8. doi: 10.1016/j.biomaterials.2012.10.025. PubMed PMID: 23146430; PMCID: PMC3511665.
  70. Lee JY, Komatsu K, Lee BC, Miyata M, O'Neill Bohn A, Xu H, Yan C, Li JD. Vinpocetine inhibits Streptococcus pneumoniae-induced upregulation of mucin MUC5AC expression via induction of MKP-1 phosphatase in the pathogenesis of otitis media. J Immunol. 2015;194(12):5990–8. doi: 10.4049/jimmunol.1401489. PubMed PMID: 25972475; PMCID: PMC4456630.
  71. Koo JW, Quintanilla-Dieck L, Jiang M, Liu J, Urdang ZD, Allensworth JJ, Cross CP, Li H, Steyger PS. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci Transl Med. 2015;7(298):298ra118. doi: 10.1126/scitranslmed.aac5546. PubMed PMID: 26223301; PMCID: PMC4534720.
  72. Ahlstrom JB, Horwitz AR, Dubno JR. Spatial separation benefit for unaided and aided listening. Ear Hear. 2014;35(1):72–85. doi: 10.1097/AUD.0b013e3182a02274. PubMed PMID: 24121648; PMCID: PMC3872487.
  73. Roland JT, Jr., Gantz BJ, Waltzman SB, Parkinson AJ, Multicenter Clinical Trial G. United States multicenter clinical trial of the cochlear nucleus hybrid implant system. Laryngoscope. 2016;126(1):175–81. doi: 10.1002/lary.25451. PubMed PMID: 26152811; PMCID: PMC4704985.
  74. Quesnel AM, Nakajima HH, Rosowski JJ, Hansen MR, Gantz BJ, Nadol JB, Jr. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology. Hear Res. 2016;333:225–34. doi: 10.1016/j.heares.2015.08.018. PubMed PMID: 26341474; PMCID: PMC4775460.
  75. Reiss LA, Turner CW, Karsten SA, Gantz BJ. Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience. 2014;256:43–52. doi: 10.1016/j.neuroscience.2013.10.024. PubMed PMID: 24157931; PMCID: PMC3893921.
  76. Friedmann DR, Ahmed OH, McMenomey SO, Shapiro WH, Waltzman SB, Roland JT, Jr. Single-sided Deafness Cochlear Implantation: Candidacy, Evaluation, and Outcomes in Children and Adults. Otol Neurotol. 2016;37(2):e154–60. doi: 10.1097/MAO.0000000000000951. PubMed PMID: 26756150.
  77. Mertens G, De Bodt M, Van de Heyning P. Cochlear implantation as a long-term treatment for ipsilateral incapacitating tinnitus in subjects with unilateral hearing loss up to 10 years. Hear Res. 2016;331:1–6. doi: 10.1016/j.heares.2015.09.016. PubMed PMID: 26433053.
  78. Bierer JA, Bierer SM, Kreft HA, Oxenham AJ. A fast method for measuring psychophysical thresholds across the cochlear implant array. Trends Hear. 2015;19. doi: 10.1177/2331216515569792. PubMed PMID: 25656797; PMCID: PMC4324086.
  79. van den Honert C, Kelsall DC. Focused intracochlear electric stimulation with phased array channels. J Acoust Soc Am. 2007;121(6):3703–16. doi: 10.1121/1.2722047. PubMed PMID: 17552721.
  80. Noij KS, Kozin ED, Sethi R, Shah PV, Kaplan AB, Herrmann B, Remenschneider A, Lee DJ. Systematic Review of Nontumor Pediatric Auditory Brainstem Implant Outcomes. Otolaryngol Head Neck Surg. 2015;153(5):739–50. doi: 10.1177/0194599815596929. PubMed PMID: 26227469.
  81. van de Berg R, Guinand N, Nguyen TA, Ranieri M, Cavuscens S, Guyot JP, Stokroos R, Kingma H, Perez-Fornos A. The vestibular implant: frequency-dependency of the electrically evoked vestibulo-ocular reflex in humans. Front Syst Neurosci. 2014;8:255. doi: 10.3389/fnsys.2014.00255. PubMed PMID: 25653601; PMCID: PMC4299437.
  82. Sun DQ, Lehar M, Dai C, Swarthout L, Lauer AM, Carey JP, Mitchell DE, Cullen KE, Della Santina CC. Histopathologic Changes of the Inner ear in Rhesus Monkeys After Intratympanic Gentamicin Injection and Vestibular Prosthesis Electrode Array Implantation. J Assoc Res Otolaryngol. 2015;16(3):373–87. doi: 10.1007/s10162–015–0515–y. PubMed PMID: 25790951; PMCID: PMC4417088.
  83. Phillips JO, Ling L, Nie K, Jameyson E, Phillips CM, Nowack AL, Golub JS, Rubinstein JT. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects. J Neurophysiol. 2015;113(10):3866–92. doi: 10.1152/jn.00171.2013. PubMed PMID: 25652917; PMCID: PMC4480623.
  84. Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol. 2014;5:206. doi: 10.3389/fneur.2014.00206. PubMed PMID: 25386157; PMCID: PMC4208401.
  85. Rauschecker JP, Leaver AM, Muhlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron. 2010;66(6):819–26. doi: 10.1016/j.neuron.2010.04.032. PubMed PMID: 20620868; PMCID: PMC2904345.
  86. Hayes SH, Radziwon KE, Stolzberg DJ, Salvi RJ. Behavioral models of tinnitus and hyperacusis in animals. Front Neurol. 2014;5:179. doi: 10.3389/fneur.2014.00179. PubMed PMID: 25278931; PMCID: PMC4166233.
  87. Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol. 2010;104(6):3361–70. doi: 10.1152/jn.00226.2010. PubMed PMID: 20881196; PMCID: PMC3007631.
  88. Chen YC, Li X, Liu L, Wang J, Lu CQ, Yang M, Jiao Y, Zang FC, Radziwon K, Chen GD, Sun W, Krishnan Muthaiah VP, Salvi R, Teng GJ. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. Elife. 2015;4:e06576. doi: 10.7554/eLife.06576. PubMed PMID: 25962854; PMCID: PMC4426664.
  89. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci. 2010;30(45):14972–9. doi: 10.1523/JNEUROSCI.4028–10.2010. PubMed PMID: 21068300; PMCID: PMC3073522.
  90. Piccirillo JF. Transcranial Magnetic Stimulation for Chronic Tinnitus. JAMA. 2016;315(5):506–7. doi: 10.1001/jama.2016.0075. PubMed PMID: 26836733.
  91. Shore SE, Roberts LE, Langguth B. Maladaptive plasticity in tinnitus - triggers, mechanisms and treatment. Nat Rev Neurol. 2016;12(3):150–60. doi: 10.1038/nrneurol.2016.12. PubMed PMID: 26868680; PMCID: PMC4895692.
  92. Hays SA, Rennaker RL, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res. 2013;207:275–99. doi: 10.1016/B978–0–444–63327–9.00010–2. PubMed PMID: 24309259; PMCID: PMC4615598.
  93. Pasley BN, David SV, Mesgarani N, Flinker A, Shamma SA, Crone NE, Knight RT, Chang EF. Reconstructing speech from human auditory cortex. PLoS Biol. 2012;10(1):e1001251. doi: 10.1371/journal.pbio.1001251. PubMed PMID: 22303281; PMCID: PMC3269422.
  94. Mesgarani N, Cheung C, Johnson K, Chang EF. Phonetic feature encoding in human superior temporal gyrus. Science. 2014;343(6174):1006–10. doi: 10.1126/science.1245994. PubMed PMID: 24482117; PMCID: PMC4350233.
  95. Bouchard KE, Mesgarani N, Johnson K, Chang EF. Functional organization of human sensorimotor cortex for speech articulation. Nature. 2013;495(7441):327–32. doi: 10.1038/nature11911. PubMed PMID: 23426266; PMCID: PMC3606666.
  96. Mesgarani N, David SV, Fritz JB, Shamma SA. Mechanisms of noise robust representation of speech in primary auditory cortex. Proc Natl Acad Sci U S A. 2014;111(18):6792–7. doi: 10.1073/pnas.1318017111. PubMed PMID: 24753585; PMCID: PMC4020083.
  97. Schneider DM, Woolley SM. Sparse and background-invariant coding of vocalizations in auditory scenes. Neuron. 2013;79(1):141–52. doi: 10.1016/j.neuron.2013.04.038. PubMed PMID: 23849201; PMCID: PMC3713513.
  98. Rabinowitz NC, Willmore BD, King AJ, Schnupp JW. Constructing noise-invariant representations of sound in the auditory pathway. PLoS Biol. 2013;11(11):e1001710. doi: 10.1371/journal.pbio.1001710. PubMed PMID: 24265596; PMCID: PMC3825667.
  99. Holt JC, Kewin K, Jordan PM, Cameron P, Klapczynski M, McIntosh JM, Crooks PA, Dwoskin LP, Lysakowski A. Pharmacologically distinct nicotinic acetylcholine receptors drive efferent-mediated excitation in calyx-bearing vestibular afferents. J Neurosci. 2015;35(8):3625–43. doi: 10.1523/JNEUROSCI.3388–14.2015. PubMed PMID: 25716861; PMCID: PMC4339364.
  100. Liu XP, Wooltorton JR, Gaboyard-Niay S, Yang FC, Lysakowski A, Eatock RA. Sodium channel diversity in the vestibular ganglion: NaV1.5, NaV1.8, and tetrodotoxin-sensitive currents. J Neurophysiol. 2016;115(5):2536–55. doi: 10.1152/jn.00902.2015. PubMed PMID: 26936982.
  101. Chen G, King JA, Burgess N, O'Keefe J. How vision and movement combine in the hippocampal place code. Proc Natl Acad Sci U S A. 2013;110(1):378–83. doi: 10.1073/pnas.1215834110. PubMed PMID: 23256159; PMCID: PMC3538268.
  102. Kaski D, Quadir S, Nigmatullina Y, Malhotra PA, Bronstein AM, Seemungal BM. Temporoparietal encoding of space and time during vestibular-guided orientation. Brain. 2016;139(Pt 2):392–403. doi: 10.1093/brain/awv370. PubMed PMID: 26719385; PMCID: PMC4805090.
  103. Fan RH, Liu S, DeAngelis GC, Angelaki DE. Heading Tuning in Macaque Area V6. J Neurosci. 2015;35(50):16303–14. doi: 10.1523/JNEUROSCI.2903–15.2015. PubMed PMID: 26674858; PMCID: PMC4679817.
  104. Dokka K, DeAngelis GC, Angelaki DE. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object. J Neurosci. 2015;35(40):13599–607. doi: 10.1523/JNEUROSCI.2267–15.2015. PubMed PMID: 26446214; PMCID: PMC4595618.
  105. Yau JM, DeAngelis GC, Angelaki DE. Dissecting neural circuits for multisensory integration and crossmodal processing. Philos Trans R Soc Lond B Biol Sci. 2015;370(1677):20140203. doi: 10.1098/rstb.2014.0203. PubMed PMID: 26240418; PMCID: PMC4528815.
  106. Carriot J, Jamali M, Cullen KE. Rapid adaptation of multisensory integration in vestibular pathways. Front Syst Neurosci. 2015;9:59. doi: 10.3389/fnsys.2015.00059. PubMed PMID: 25932009; PMCID: PMC4399207.
  107. CDC. Important Facts about Falls 2016. Available from:
  108. Formerly available from the NIH Senior Health website, discontinued as of 8/2017.
  109. NIH. Preventing Falls 2014; Winter 2014.:[Available from:
  110. NIH. Dizziness Can Be a Drag: Coping with Balance Disorders 2012. Available from:
  111. Orces CH, Alamgir H. Trends in fall-related injuries among older adults treated in emergency departments in the USA. Injury Prev. 2014;20(6):421–3. doi: 10.1136/injuryprev–2014–041268. PubMed PMID: WOS:000345276000009.
  112. CDC. National Center for Injury Prevention and Control. Web-based Injury Statistics Query and Reporting System (WISQARS) [online] [cited 2013 August 15].
  113. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65(1):175–87. PubMed PMID: 1840504.
  114. NIDCD. NIDCD Taste and Smell Statistics 2016. Available from: /health/taste-smell.
  115. Rawal S, Hoffman HJ, Bainbridge KE, Huedo-Medina TB, Duffy VB. Prevalence and Risk Factors of Self-Reported Smell and Taste Alterations: Results from the 2011–2012 US National Health and Nutrition Examination Survey (NHANES). Chem Senses. 2016;41(1):69–76. doi: 10.1093/chemse/bjv057. PubMed PMID: 26487703; PMCID: PMC4715252.
  116. NIDDK. Overweight and Obesity Statistics2016.
  117. NIDDK. Do You Know Some of the Health Risks of Being Overweight? 2016.
  118. Beauchamp GK, Mennella JA. Flavor perception in human infants: development and functional significance. Digestion. 2011;83 Suppl 1:1–6. doi: 10.1159/000323397 PubMed PMID: 21389721; PMCID: PMC3202923.
  119. Dalton PH, Opiekun RE, Gould M, McDermott R, Wilson T, Maute C, Ozdener MH, Zhao K, Emmett E, Lees PS, Herbert R, Moline J. Chemosensory loss: functional consequences of the world trade center disaster. Environ Health Perspect. 2010;118(9):1251–6. doi: 10.1289/ehp.1001924. PubMed PMID: 20478761; PMCID: PMC2944085.
  120. Johnson MA, Tsai L, Roy DS, Valenzuela DH, Mosley C, Magklara A, Lomvardas S, Liberles SD, Barnea G. Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem. Proc Natl Acad Sci U S A. 2012;109(33):13410–5. doi: 10.1073/pnas.1206724109. PubMed PMID: 22837392; PMCID: PMC3421222.
  121. Yee KK, Sukumaran SK, Kotha R, Gilbertson TA, Margolskee RF. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci U S A. 2011;108(13):5431–6. doi: 10.1073/pnas.1100495108. PubMed PMID: 21383163; PMCID: PMC3069197.
  122. Yasumatsu K, Ogiwara Y, Takai S, Yoshida R, Iwatsuki K, Torii K, Margolskee RF, Ninomiya Y. Umami taste in mice uses multiple receptors and transduction pathways. J Physiol. 2012;590(5):1155–70. doi: 10.1113/jphysiol.2011.211920. PubMed PMID: 22183726; PMCID: PMC3381822.
  123. Ye W, Chang RB, Bushman JD, Tu YH, Mulhall EM, Wilson CE, Cooper AJ, Chick WS, Hill-Eubanks DC, Nelson MT, Kinnamon SC, Liman ER. The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci U S A. 2016;113(2):E229–38. doi: 10.1073/pnas.1514282112. PubMed PMID: 26627720; PMCID: PMC4720319.
  124. Lewandowski BC, Sukumaran SK, Margolskee RF, Bachmanov AA. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms. J Neurosci. 2016;36(6):1942–53. doi: 10.1523/JNEUROSCI.2947–15.2016. PubMed PMID: 26865617; PMCID: PMC4748077.
  125. Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature. 2013;495(7440):223–6. doi: 10.1038/nature11906. PubMed PMID: 23467090; PMCID: PMC3600154.
  126. Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS. The cells and peripheral representation of sodium taste in mice. Nature. 2010;464(7286):297–301. doi: 10.1038/nature08783. PubMed PMID: 20107438; PMCID: PMC2849629.
  127. Li Q, Tachie-Baffour Y, Liu Z, Baldwin MW, Kruse AC, Liberles SD. Non-classical amine recognition evolved in a large clade of olfactory receptors. Elife. 2015;4:e10441. doi: 10.7554/eLife.10441. PubMed PMID: 26519734; PMCID: PMC4695389.
  128. Koh TW, He Z, Gorur-Shandilya S, Menuz K, Larter NK, Stewart S, Carlson JR. The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron. 2014;83(4):850–65. doi: 10.1016/j.neuron.2014.07.012. PubMed PMID: 25123314; PMCID: PMC4141888.
  129. Hanchate NK, Kondoh K, Lu Z, Kuang D, Ye X, Qiu X, Pachter L, Trapnell C, Buck LB. Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science. 2015;350(6265):1251–5. doi: 10.1126/science.aad2456. PubMed PMID: 26541607.
  130. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci U S A. 2010;107(7):3210–5. doi: 10.1073/pnas.0911934107. PubMed PMID: 20133764; PMCID: PMC2840287.
  131. Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124(3):1393–405. doi: 10.1172/JCI72094. PubMed PMID: 24531552; PMCID: PMC3934184.
  132. McClintock TS, Adipietro K, Titlow WB, Breheny P, Walz A, Mombaerts P, Matsunami H. In vivo identification of eugenol-responsive and muscone-responsive mouse odorant receptors. J Neurosci. 2014;34(47):15669–78. doi: 10.1523/JNEUROSCI.3625–14.2014. PubMed PMID: 25411495; PMCID: PMC4236398.
  133. Munger SD, Leinders-Zufall T, McDougall LM, Cockerham RE, Schmid A, Wandernoth P, Wennemuth G, Biel M, Zufall F, Kelliher KR. An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol. 2010;20(16):1438–44. doi: 10.1016/j.cub.2010.06.021. PubMed PMID: 20637621; PMCID: PMC2929674.
  134. Jiang Y, Gong NN, Hu XS, Ni MJ, Pasi R, Matsunami H. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo. Nat Neurosci. 2015;18(10):1446–54. doi: 10.1038/nn.4104. PubMed PMID: 26322927; PMCID: PMC4583814.
  135. Cameron P, Hiroi M, Ngai J, Scott K. The molecular basis for water taste in Drosophila. Nature. 2010;465(7294):91–5. doi: 10.1038/nature09011. PubMed PMID: 20364123; PMCID: PMC2865571.
  136. Kaur AW, Ackels T, Kuo TH, Cichy A, Dey S, Hays C, Kateri M, Logan DW, Marton TF, Spehr M, Stowers L. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 2014;157(3):676–88. doi: 10.1016/j.cell.2014.02.025. PubMed PMID: 24766811; PMCID: PMC4051225.
  137. Kass MD, Rosenthal MC, Pottackal J, McGann JP. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science. 2013;342(6164):1389–92. doi: 10.1126/science.1244916. PubMed PMID: 24337299; PMCID: PMC4011636.
  138. Root CM, Ko KI, Jafari A, Wang JW. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell. 2011;145(1):133–44. doi: 10.1016/j.cell.2011.02.008. PubMed PMID: 21458672; PMCID: PMC3073827.
  139. Domingos AI, Vaynshteyn J, Voss HU, Ren X, Gradinaru V, Zang F, Deisseroth K, de Araujo IE, Friedman J. Leptin regulates the reward value of nutrient. Nat Neurosci. 2011;14(12):1562–8. doi: 10.1038/nn.2977. PubMed PMID: 22081158; PMCID: PMC4238286.
  140. Debiec J, Sullivan RM. Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc Natl Acad Sci U S A. 2014;111(33):12222–7. doi: 10.1073/pnas.1316740111. PubMed PMID: 25071168; PMCID: PMC4142995.
  141. Yoshida R, Ohkuri T, Jyotaki M, Yasuo T, Horio N, Yasumatsu K, Sanematsu K, Shigemura N, Yamamoto T, Margolskee RF, Ninomiya Y. Endocannabinoids selectively enhance sweet taste. Proc Natl Acad Sci U S A. 2010;107(2):935–9. doi: 10.1073/pnas.0912048107. PubMed PMID: 20080779; PMCID: PMC2818929.
  142. Hayes JE, Sullivan BS, Duffy VB. Explaining variability in sodium intake through oral sensory phenotype, salt sensation and liking. Physiol Behav. 2010;100(4):369–80. doi: 10.1016/j.physbeh.2010.03.017. PubMed PMID: 20380843; PMCID: PMC2874635.
  143. Mathes CM, Bueter M, Smith KR, Lutz TA, le Roux CW, Spector AC. Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(6):R751–67. doi: 10.1152/ajpregu.00214.2011. PubMed PMID: 22170618; PMCID: PMC3774488.
  144. Pepino MY, Mennella JA. Habituation to the pleasure elicited by sweetness in lean and obese women. Appetite. 2012;58(3):800–5. doi: 10.1016/j.appet.2012.01.026. PubMed PMID: 22326885; PMCID: PMC3340467.
  145. Rudenga KJ, Small DM. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite. 2012;58(2):504–7. doi: 10.1016/j.appet.2011.12.001. PubMed PMID: 22178008; PMCID: PMC3289048.
  146. Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, Fadool JC, Gale AM, Gale DS, Fadool DA. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci. 2014;34(20):6970–84. doi: 10.1523/JNEUROSCI.3366–13.2014. PubMed PMID: 24828650; PMCID: PMC4019806.
  147. Mennella JA, Finkbeiner S, Lipchock SV, Hwang LD, Reed DR. Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLoS One. 2014;9(3):e92201. doi: 10.1371/journal.pone.0092201. PubMed PMID: 24637844; PMCID: PMC3956914.
  148. McIntyre JC, Davis EE, Joiner A, Williams CL, Tsai IC, Jenkins PM, McEwen DP, Zhang L, Escobado J, Thomas S, Szymanska K, Johnson CA, Beales PL, Green ED, Mullikin JC, Program NCS, Sabo A, Muzny DM, Gibbs RA, Attie-Bitach T, Yoder BK, Reed RR, Katsanis N, Martens JR. Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat Med. 2012;18(9):1423–8. doi: 10.1038/nm.2860. PubMed PMID: 22941275; PMCID: PMC3645984.
  149. Tadenev AL, Kulaga HM, May-Simera HL, Kelley MW, Katsanis N, Reed RR. Loss of Bardet-Biedl syndrome protein-8 (BBS8) perturbs olfactory function, protein localization, and axon targeting. Proc Natl Acad Sci U S A. 2011;108(25):10320–5. doi: 10.1073/pnas.1016531108. PubMed PMID: 21646512; PMCID: PMC3121838.
  150. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. 2011;472(7342):186–90. doi: 10.1038/nature09975. PubMed PMID: 21441906; PMCID: PMC3674497.
  151. Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE. ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503–6. doi: 10.1126/science.1217697. PubMed PMID: 22323736; PMCID: PMC3651582.
  152. Cao L, Schrank BR, Rodriguez S, Benz EG, Moulia TW, Rickenbacher GT, Gomez AC, Levites Y, Edwards SR, Golde TE, Hyman BT, Barnea G, Albers MW. Abeta alters the connectivity of olfactory neurons in the absence of amyloid plaques in vivo. Nat Commun. 2012;3:1009. doi: 10.1038/ncomms2013. PubMed PMID: 22910355; PMCID: PMC3529477.
  153. Li W, Howard JD, Gottfried JA. Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer's disease. Brain. 2010;133(9):2714–26. doi: 10.1093/brain/awq209. PubMed PMID: 20724290; PMCID: PMC2948816.
  154. Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias PT, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012;122(11):4145–59. doi: 10.1172/JCI64240. PubMed PMID: 23041624; PMCID: PMC3484455.
  155. Lane AP, Turner J, May L, Reed R. A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J Neurosci. 2010;30(6):2324–9. doi: 10.1523/JNEUROSCI.4507–09.2010. PubMed PMID: 20147558; PMCID: PMC2957830.
  156. Guo Z, Packard A, Krolewski RC, Harris MT, Manglapus GL, Schwob JE. Expression of pax6 and sox2 in adult olfactory epithelium. J Comp Neurol. 2010;518(21):4395–418. doi: 10.1002/cne.22463. PubMed PMID: 20852734; PMCID: PMC2940252.
  157. Wang YZ, Yamagami T, Gan Q, Wang Y, Zhao T, Hamad S, Lott P, Schnittke N, Schwob JE, Zhou CJ. Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J Cell Sci. 2011;124(Pt 9):1553–63. doi: 10.1242/jcs.080580. PubMed PMID: 21486944; PMCID: PMC3078819.
  158. Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P. Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells. 2013;31(5):992–1000. doi: 10.1002/stem.1338. PubMed PMID: 23377989; PMCID: PMC3637415.
  159. Nguyen HM, Reyland ME, Barlow LA. Mechanisms of taste bud cell loss after head and neck irradiation. J Neurosci. 2012;32(10):3474–84. doi: 10.1523/JNEUROSCI.4167–11.2012. PubMed PMID: 22399770; PMCID: PMC3320161.
  160. Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, Margolskee RF, Jiang P. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci U S A. 2014;111(46):16401–6. doi: 10.1073/pnas.1409064111. PubMed PMID: 25368147; PMCID: PMC4246268.
  161. Kumari A, Ermilov AN, Allen BL, Bradley RM, Dlugosz AA, Mistretta CM. Hedgehog pathway blockade with the cancer drug LDE225 disrupts taste organs and taste sensation. J Neurophysiol. 2015;113(3):1034–40. doi: 10.1152/jn.00822.2014. PubMed PMID: 25392175; PMCID: PMC4312875.
  162. Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature. 2011;478(7370):511–4. doi: 10.1038/nature10438. PubMed PMID: 21937991; PMCID: PMC3203342.
  163. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, Jasinskiene N, James AA, Vosshall LB. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 2013;498(7455):487–91. doi: 10.1038/nature12206. PubMed PMID: 23719379; PMCID: PMC3696029.
  164. Lee Y, Kim SH, Montell C. Avoiding DEET through insect gustatory receptors. Neuron. 2010;67(4):555–61. doi: 10.1016/j.neuron.2010.07.006. PubMed PMID: 20797533; PMCID: PMC2929391.
  165. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. Distinct representations of olfactory information in different cortical centres. Nature. 2011;472(7342):213–6. doi: 10.1038/nature09868. PubMed PMID: 21451525; PMCID: PMC3354569.
  166. Chapuis J, Cohen Y, He X, Zhang Z, Jin S, Xu F, Wilson DA. Lateral entorhinal modulation of piriform cortical activity and fine odor discrimination. J Neurosci. 2013;33(33):13449–59. doi: 10.1523/JNEUROSCI.1387–13.2013. PubMed PMID: 23946403; PMCID: PMC3742931.
  167. Haddad R, Lanjuin A, Madisen L, Zeng H, Murthy VN, Uchida N. Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat Neurosci. 2013;16(7):949–57. doi: 10.1038/nn.3407. PubMed PMID: 23685720; PMCID: PMC3695490.
  168. Jezzini A, Mazzucato L, La Camera G, Fontanini A. Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks. J Neurosci. 2013;33(48):18966–78. doi: 10.1523/JNEUROSCI.2974–13.2013. PubMed PMID: 24285901; PMCID: PMC3841457.
  169. Miller P, Katz DB. Stochastic transitions between neural states in taste processing and decision-making. J Neurosci. 2010;30(7):2559–70. doi: 10.1523/JNEUROSCI.3047–09.2010. PubMed PMID: 20164341; PMCID: PMC2851230.
  170. Moran A, Katz DB. Sensory cortical population dynamics uniquely track behavior across learning and extinction. J Neurosci. 2014;34(4):1248–57. doi: 10.1523/JNEUROSCI.3331–13.2014. PubMed PMID: 24453316; PMCID: PMC3898286.
  171. Olofsson JK, Hurley RS, Bowman NE, Bao X, Mesulam MM, Gottfried JA. A designated odor-language integration system in the human brain. J Neurosci. 2014;34(45):14864–73. doi: 10.1523/JNEUROSCI.2247–14.2014. PubMed PMID: 25378154; PMCID: PMC4220022.
  172. Wesson DW, Borkowski AH, Landreth GE, Nixon RA, Levy E, Wilson DA. Sensory network dysfunction, behavioral impairments, and their reversibility in an Alzheimer's beta-amyloidosis mouse model. J Neurosci. 2011;31(44):15962–71. doi: 10.1523/JNEUROSCI.2085–11.2011. PubMed PMID: 22049439; PMCID: PMC3417321.
  173. Rokni D, Hemmelder V, Kapoor V, Murthy VN. An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nat Neurosci. 2014;17(9):1225–32. doi: 10.1038/nn.3775. PubMed PMID: 25086608; PMCID: PMC4146660.
  174. Poo C, Isaacson JS. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron. 2011;72(1):41–8. doi: 10.1016/j.neuron.2011.08.015. PubMed PMID: 21982367; PMCID: PMC3190137.
  175. Kato HK, Chu MW, Isaacson JS, Komiyama T. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron. 2012;76(5):962–75. doi: 10.1016/j.neuron.2012.09.037. PubMed PMID: 23217744; PMCID: PMC3523713.
  176. Doucette W, Gire DH, Whitesell J, Carmean V, Lucero MT, Restrepo D. Associative cortex features in the first olfactory brain relay station. Neuron. 2011;69(6):1176–87. doi: 10.1016/j.neuron.2011.02.024. PubMed PMID: 21435561; PMCID: PMC3064824.
  177. Bazhenov M, Huerta R, Smith BH. A computational framework for understanding decision making through integration of basic learning rules. J Neurosci. 2013;33(13):5686–97. doi: 10.1523/JNEUROSCI.4145–12.2013. PubMed PMID: 23536082; PMCID: PMC3667960.
  178. Harris DT, Kallman BR, Mullaney BC, Scott K. Representations of Taste Modality in the Drosophila Brain. Neuron. 2015;86(6):1449–60. doi: 10.1016/j.neuron.2015.05.026. PubMed PMID: 26051423; PMCID: PMC4474761.
  179. Wu A, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD. Breadth of tuning in taste afferent neurons varies with stimulus strength. Nat Commun. 2015;6:8171. doi: 10.1038/ncomms9171. PubMed PMID: 26373451; PMCID: PMC4573454.
  180. Wilson DM, Lemon CH. Modulation of central gustatory coding by temperature. J Neurophysiol. 2013;110(5):1117–29. doi: 10.1152/jn.00974.2012. PubMed PMID: 23761701; PMCID: PMC3763089.
  181. Barretto RP, Gillis-Smith S, Chandrashekar J, Yarmolinsky DA, Schnitzer MJ, Ryba NJ, Zuker CS. The neural representation of taste quality at the periphery. Nature. 2015;517(7534):373–6. doi: 10.1038/nature13873. PubMed PMID: 25383521; PMCID: PMC4297533.
  182. Wang W, Lu S, Li T, Pan YW, Zou J, Abel GM, Xu L, Storm DR, Xia Z. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J Neurosci. 2015;35(20):7833–49. doi: 10.1523/JNEUROSCI.3745–14.2015. PubMed PMID: 25995470; PMCID: PMC4438129.
  183. Howard JD, Gottfried JA. Configural and elemental coding of natural odor mixture components in the human brain. Neuron. 2014;84(4):857–69. doi: 10.1016/j.neuron.2014.10.012. PubMed PMID: 25453843; PMCID: PMC4254622.
  184. Fortis-Santiago Y, Rodwin BA, Neseliler S, Piette CE, Katz DB. State dependence of olfactory perception as a function of taste cortical inactivation. Nat Neurosci. 2010;13(2):158–9. doi: 10.1038/nn.2463. PubMed PMID: 20023656; PMCID: PMC2834247.
  185. Dus M, Lai JS, Gunapala KM, Min S, Tayler TD, Hergarden AC, Geraud E, Joseph CM, Suh GS. Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila. Neuron. 2015;87(1):139–51. doi: 10.1016/j.neuron.2015.05.032. PubMed PMID: 26074004; PMCID: PMC4697866.
  186. Gaudry Q, Hong EJ, Kain J, de Bivort BL, Wilson RI. Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature. 2013;493(7432):424–8. doi: 10.1038/nature11747. PubMed PMID: 23263180; PMCID: PMC3590906.
  187. Gutierrez R, Simon SA, Nicolelis MA. Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning. J Neurosci. 2010;30(1):287–303. doi: 10.1523/JNEUROSCI.0855–09.2010. PubMed PMID: 20053910; PMCID: PMC2831544.
  188. Peng Y, Gillis-Smith S, Jin H, Trankner D, Ryba NJ, Zuker CS. Sweet and bitter taste in the brain of awake behaving animals. Nature. 2015;527(7579):512–5. doi: 10.1038/nature15763. PubMed PMID: 26580015; PMCID: PMC4712381.
  189. Root CM, Denny CA, Hen R, Axel R. The participation of cortical amygdala in innate, odour-driven behaviour. Nature. 2014;515(7526):269–73. doi: 10.1038/nature13897. PubMed PMID: 25383519; PMCID: PMC4231015.
  190. Dulac C, O'Connell LA, Wu Z. Neural control of maternal and paternal behaviors. Science. 2014;345(6198):765–70. doi: 10.1126/science.1253291. PubMed PMID: 25124430; PMCID: PMC4230532.
  191. van Breugel F, Riffell J, Fairhall A, Dickinson MH. Mosquitoes Use Vision to Associate Odor Plumes with Thermal Targets. Curr Biol. 2015;25(16):2123–9. doi: 10.1016/j.cub.2015.06.046. PubMed PMID: 26190071; PMCID: PMC4546539.
  192. McBride CS, Baier F, Omondi AB, Spitzer SA, Lutomiah J, Sang R, Ignell R, Vosshall LB. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 2014;515(7526):222–7. doi: 10.1038/nature13964. PubMed PMID: 25391959; PMCID: PMC4286346.
  193. CDC. Communication Disorders and Use of Intervention Services Among Children Aged 3–17 Years: United States, 2012 2012. Available from:
  194. Catts HW, Bridges MS, Little TD, Tomblin JB. Reading achievement growth in children with language impairments. J Speech Lang Hear Res. 2008;51(6):1569-79. doi: 10.1044/1092-4388(2008/07-0259). PubMed PMID: 18695010; PMCID: PMC3763805.
  195. Durkin K, Conti-Ramsden G. Language, social behavior, and the quality of friendships in adolescents with and without a history of specific language impairment. Child Dev. 2007;78(5):1441-57. doi: 10.1111/j.1467-8624.2007.01076.x. PubMed PMID: 17883441.
  196. Clegg J, Hollis C, Mawhood L, Rutter M. Developmental language disorders--a follow-up in later adult life. Cognitive, language and psychosocial outcomes. J Child Psychol Psychiatry. 2005;46(2):128-49. doi: 10.1111/j.1469-7610.2004.00342.x. PubMed PMID: 15679523.
  197. Rice ML, Haney KR, Wexler K. Family histories of children with SLI who show extended optional infinitives. J Speech Lang Hear Res. 1998;41(2):419–32. PubMed PMID: 9570593.
  198. Rice ML, Smith SD, Gayan J. Convergent genetic linkage and associations to language, speech and reading measures in families of probands with Specific Language Impairment. J Neurodev Disord. 2009;1(4):264–82. doi: 10.1007/s11689–009–9031–x. PubMed PMID: 19997522; PMCID: PMC2788915.
  199. Erickson E, Sivasankar M. Simulated reflux decreases vocal fold epithelial barrier resistance. Laryngoscope. 2010;120(8):1569–75. doi: 10.1002/lary.20983. PubMed PMID: 20564752; PMCID: PMC2927501.
  200. Levendoski EE, Sivasankar MP. Vocal fold ion transport and mucin expression following acrolein exposure. J Membr Biol. 2014;247(5):441–50. doi: 10.1007/s00232–014–9651–2. PubMed PMID: 24648011; PMCID: PMC4306594.
  201. Cohen SM, Kim J, Roy N, Asche C, Courey M. The impact of laryngeal disorders on work-related dysfunction. Laryngoscope. 2012;122(7):1589–94. doi: 10.1002/lary.23197. PubMed PMID: 22549455.
  202. Cohen SM, Kim J, Roy N, Asche C, Courey M. Direct health care costs of laryngeal diseases and disorders. Laryngoscope 2012;122(7):1582–8. doi: 10.1002/lary.23189. PubMed PMID: 22544473.
  203. Roy N, Merrill RM, Thibeault S, Parsa RA, Gray SD, Smith EM. Prevalence of voice disorders in teachers and the general population. J Speech Lang Hear Res. 2004;47(2):281–93. doi: 10.1044/1092–4388(2004/023). PubMed PMID: 15157130.
  204. Smith E, Lemke J, Taylor M, Kirchner HL, Hoffman H. Frequency of voice problems among teachers and other occupations. J Voice. 1998;12(4):480–8. PubMed PMID: 9988035.
  205. Thibeault SL, Merrill RM, Roy N, Gray SD, Smith EM. Occupational risk factors associated with voice disorders among teachers. Ann Epidemiol. 2004;14(10):786–92. doi: 10.1016/j.annepidem.2004.03.004. PubMed PMID: 15519901.
  206. Verdolini K, Ramig LO. Review: occupational risks for voice problems. Logoped Phoniatr Vocol. 2001;26(1):37–46. PubMed PMID: 11432413.
  207. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, American Heart Association Statistics C, Stroke Statistics S. Heart disease and stroke statistics--2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209. doi: 10.1161/CIR.0b013e3182009701. PubMed PMID: 21160056; PMCID: PMC4418670.
  208. Bays CL. Quality of life of stroke survivors: a research synthesis. J Neurosci Nurs. 2001;33(6):310–6. PubMed PMID: 11776713.
  209. Eicher JD, Powers NR, Miller LL, Mueller KL, Mascheretti S, Marino C, Willcutt EG, DeFries JC, Olson RK, Smith SD, Pennington BF, Tomblin JB, Ring SM, Gruen JR. Characterization of the DYX2 locus on chromosome 6p22 with reading disability, language impairment, and IQ. Hum Genet. 2014;133(7):869–81. doi: 10.1007/s00439–014–1427–3. PubMed PMID: 24509779; PMCID: PMC4053598.
  210. Fedorenko E, Morgan A, Murray E, Cardinaux A, Mei C, Tager-Flusberg H, Fisher SE, Kanwisher N. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. Eur J Hum Genet. 2016;24(2):302–6. doi: 10.1038/ejhg.2015.149. PubMed PMID: 26173965; PMCID: PMC4717199.
  211. Graham SA, Deriziotis P, Fisher SE. Insights into the genetic foundations of human communication. Neuropsychol Rev. 2015;25(1):3–26. doi: 10.1007/s11065–014–9277–2. PubMed PMID: 25597031.
  212. Kornilov SA, Rakhlin N, Koposov R, Lee M, Yrigollen C, Caglayan AO, Magnuson JS, Mane S, Chang JT, Grigorenko EL. Genome-Wide Association and Exome Sequencing Study of Language Disorder in an Isolated Population. Pediatrics. 2016;137(4). doi: 10.1542/peds.2015–2469. PubMed PMID: 27016271.
  213. Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM, Jakielski KJ, Dimmock DP, Strand EA, Shriberg LD. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord. 2013;5(1):29. doi: 10.1186/1866–1955–5–29. PubMed PMID: 24083349; PMCID: PMC3851280.
  214. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, Salmi M, Tsintsadze T, Addis L, Motte J, Wright S, Tsintsadze V, Michel A, Doummar D, Lascelles K, Strug L, Waters P, de Bellescize J, Vrielynck P, de Saint Martin A, Ville D, Ryvlin P, Arzimanoglou A, Hirsch E, Vincent A, Pal D, Burnashev N, Sanlaville D, Szepetowski P. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45(9):1061–6. doi: 10.1038/ng.2726. PubMed PMID: 23933820.
  215. Turner SJ, Mayes AK, Verhoeven A, Mandelstam SA, Morgan AT, Scheffer IE. GRIN2A: an aptly named gene for speech dysfunction. Neurology. 2015;84(6):586–93. doi: 10.1212/WNL.0000000000001228. PubMed PMID: 25596506; PMCID: PMC4335991.
  216. Durkes A, Sivasankar MP. Bicarbonate availability for vocal fold epithelial defense to acidic challenge. Ann Otol Rhinol Laryngol. 2014;123(1):71–6. doi: 10.1177/0003489414521143. PubMed PMID: 24574427; PMCID: PMC4000062.
  217. Wood JM, Hussey DJ, Woods CM, Watson DI, Carney AS. Biomarkers and laryngopharyngeal reflux. J Laryngol Otol. 2011;125(12):1218–24. doi: 10.1017/S0022215111002234. PubMed PMID: 21914248.
  218. Welham NV, Ling C, Dawson JA, Kendziorski C, Thibeault SL, Yamashita M. Microarray-based characterization of differential gene expression during vocal fold wound healing in rats. Dis Model Mech. 2015;8(3):311–21. doi: 10.1242/dmm.018366. PubMed PMID: 25592437; PMCID: PMC4348567.
  219. Lewis BA, Patton E, Freebairn L, Tag J, Iyengar SK, Stein CM, Taylor HG. Psychosocial co-morbidities in adolescents and adults with histories of communication disorders. J Commun Disord. 2016;61:60–70. doi: 10.1016/j.jcomdis.2016.03.004. PubMed PMID: 27032038; PMCID: PMC4880534.
  220. Redmond SM. Language Impairment in the Attention-Deficit/Hyperactivity Disorder Context. J Speech Lang Hear Res. 2016;59(1):133–42. doi: 10.1044/2015_JSLHR–L–15–0038. PubMed PMID: 26502026; PMCID: PMC4867926.
  221. Snowling MJ, Duff FJ, Nash HM, Hulme C. Language profiles and literacy outcomes of children with resolving, emerging, or persisting language impairments. J Child Psychol Psychiatry. 2015. doi: 10.1111/jcpp.12497. PubMed PMID: 26681150.
  222. Stager SV, Freeman FJ, Braun A. Characteristics of Fluency and Speech in Two Families With High Incidences of Stuttering. J Speech Lang Hear Res. 2015;58(5):1440–51. doi: 10.1044/2015_JSLHR–S–14–0080. PubMed PMID: 26126023; PMCID: PMC4686306.
  223. Heris HK, Miri AK, Ghattamaneni NR, Li NY, Thibeault SL, Wiseman PW, Mongeau L. Microstructural and mechanical characterization of scarred vocal folds. J Biomech. 2015;48(4):708–11. doi: 10.1016/j.jbiomech.2015.01.014. PubMed PMID: 25648495; PMCID: PMC4337956.
  224. Kasari C, Brady N, Lord C, Tager-Flusberg H. Assessing the minimally verbal school-aged child with autism spectrum disorder. Autism Res. 2013;6(6):479–93. doi: 10.1002/aur.1334. PubMed PMID: 24353165; PMCID: PMC4139180.
  225. Szarkowski A, Mood D, Shield A, Wiley S, Yoshinaga-Itano C. A summary of current understanding regarding children with autism spectrum disorder who are deaf or hard of hearing. Semin Speech Lang. 2014;35(4):241–59. doi: 10.1055/s–0034–1389097. PubMed PMID: 25321849.
  226. Thurm A, Manwaring SS, Swineford L, Farmer C. Longitudinal study of symptom severity and language in minimally verbal children with autism. J Child Psychol Psychiatry. 2015;56(1):97–104. doi: 10.1111/jcpp.12285. PubMed PMID: 24961159; PMCID: PMC4581593.
  227. Varley R, Cowell PE, Dyson L, Inglis L, Roper A, Whiteside SP. Self-Administered Computer Therapy for Apraxia of Speech: Two-Period Randomized Control Trial With Crossover. Stroke. 2016;47(3):822–8. doi: 10.1161/STROKEAHA.115.011939. PubMed PMID: 26797664.
  228. Mehta DD, Van Stan JH, Zanartu M, Ghassemi M, Guttag JV, Espinoza VM, Cortes JP, Cheyne HA, 2nd, Hillman RE. Using Ambulatory Voice Monitoring to Investigate Common Voice Disorders: Research Update. Front Bioeng Biotechnol. 2015;3:155. doi: 10.3389/fbioe.2015.00155. PubMed PMID: 26528472; PMCID: PMC4607864.
  229. Mehta DD, Zanartu M, Feng SW, Cheyne HA, 2nd, Hillman RE. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform. IEEE Trans Biomed Eng. 2012;59(11):3090–6. doi: 10.1109/TBME.2012.2207896. PubMed PMID: 22875236; PMCID: PMC3539821.
  230. Kojima T, Valenzuela CV, Novaleski CK, Van Deusen M, Mitchell JR, Garrett CG, Sivasankar MP, Rousseau B. Effects of phonation time and magnitude dose on vocal fold epithelial genes, barrier integrity, and function. Laryngoscope. 2014;124(12):2770–8. doi: 10.1002/lary.24827. PubMed PMID: 25073715; PMCID: PMC4241156.
  231. Adams C, Lockton E, Freed J, Gaile J, Earl G, McBean K, Nash M, Green J, Vail A, Law J. The Social Communication Intervention Project: a randomized controlled trial of the effectiveness of speech and language therapy for school-age children who have pragmatic and social communication problems with or without autism spectrum disorder. Int J Lang Commun Disord. 2012;47(3):233–44. doi: 10.1111/j.1460–6984.2011.00146.x. PubMed PMID: 22512510.
  232. Kasari C, Kaiser A, Goods K, Nietfeld J, Mathy P, Landa R, Murphy S, Almirall D. Communication interventions for minimally verbal children with autism: a sequential multiple assignment randomized trial. J Am Acad Child Adolesc Psychiatry. 2014;53(6):635–46. doi: 10.1016/j.jaac.2014.01.019. PubMed PMID: 24839882; PMCID: PMC4030683.
  233. van Vuuren S, Cherney LR. A Virtual Therapist for Speech and Language Therapy. Intell Virtual Agents. 2014;8637:438–48. doi: 10.1007/978–3–319–09767–1_55. PubMed PMID: 25938137; PMCID: PMC4415876.
  234. Meinzer M, Darkow R, Lindenberg R, Floel A. Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain. 2016;139(Pt 4):1152–63. doi: 10.1093/brain/aww002. PubMed PMID: 26912641.
  235. Tsapkini K, Frangakis C, Gomez Y, Davis C, Hillis AE. Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: Preliminary results and challenges. Aphasiology. 2014;28(8–9):1112–30. doi: 10.1080/02687038.2014.930410. PubMed PMID: 26097278; PMCID: PMC4470615.
  236. Engineer CT, Engineer ND, Riley JR, Seale JD, Kilgard MP. Pairing Speech Sounds With Vagus Nerve Stimulation Drives Stimulus-specific Cortical Plasticity. Brain Stimul. 2015;8(3):637–44. doi: 10.1016/j.brs.2015.01.408. PubMed PMID: 25732785; PMCID: PMC4461522.
  237. Boyd TK, Barnett JEH, More CM. Evaluating iPad Technology for Enhancing Communication Skills of Children With Autism Spectrum Disorders. Interv Sch Clin. 2015;51(1):19–27. doi: 10.1177/1053451215577476. PubMed PMID: WOS:000359419100003.
  238. McNaughton D, Light J. The iPad and mobile technology revolution: benefits and challenges for individuals who require augmentative and alternative communication. Augment Altern Commun. 2013;29(2):107–16. doi: 10.3109/07434618.2013.784930. PubMed PMID: 23705813.
  239. Guenther FH, Hickok G. Role of the auditory system in speech production. Handb Clin Neurol. 2015;129:161–75. doi: 10.1016/B978–0–444–62630–1.00009–3. PubMed PMID: 25726268.
  240. Fishman JM, Long J, Gugatschka M, De Coppi P, Hirano S, Hertegard S, Thibeault SL, Birchall MA. Stem cell approaches for vocal fold regeneration. Laryngoscope. 2016. doi: 10.1002/lary.25820. PubMed PMID: 26774977.
  241. Ling C, Li Q, Brown ME, Kishimoto Y, Toya Y, Devine EE, Choi KO, Nishimoto K, Norman IG, Tsegyal T, Jiang JJ, Burlingham WJ, Gunasekaran S, Smith LM, Frey BL, Welham NV. Bioengineered vocal fold mucosa for voice restoration. Sci Transl Med. 2015;7(314):314ra187. doi: 10.1126/scitranslmed.aab4014. PubMed PMID: 26582902; PMCID: PMC4669060.
  242. Bhattacharya P, Siegmund T. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions. Int J Numer Method Biomed Eng. 2014;30(10):1019–43. doi: 10.1002/cnm.2642. PubMed PMID: 24760548.
  243. Ikuma T, Kunduk M, McWhorter AJ. Mitigation of temporal aliasing via harmonic modeling of laryngeal waveforms in high-speed videoendoscopy. J Acoust Soc Am. 2012;132(3):1636–45. doi: 10.1121/1.4742730. PubMed PMID: 22978892.
  244. Kvit AA, Devine EE, Jiang JJ, Vamos AC, Tao C. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis. J Voice. 2015;29(3):265–72. doi: 10.1016/j.jvoice.2014.08.010. PubMed PMID: 25619469; PMCID: PMC4439368.
  245. Samlan RA, Story BH, Lotto AJ, Bunton K. Acoustic and perceptual effects of left-right laryngeal asymmetries based on computational modeling. J Speech Lang Hear Res. 2014;57(5):1619–37. doi: 10.1044/2014_JSLHR–S–12–0405. PubMed PMID: 24845730; PMCID: PMC4495963.
  246. Yang A, Stingl M, Berry DA, Lohscheller J, Voigt D, Eysholdt U, Dollinger M. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model. J Acoust Soc Am. 2011;130(2):948–64. doi: 10.1121/1.3605551. PubMed PMID: 21877808; PMCID: PMC3195891.
  247. Port RG, Anwar AR, Ku M, Carlson GC, Siegel SJ, Roberts TP. Prospective MEG biomarkers in ASD: pre-clinical evidence and clinical promise of electrophysiological signatures. Yale J Biol Med. 2015;88(1):25–36. PubMed PMID: 25745372; PMCID: PMC4345535.
  248. Roberts TP, Heiken K, Zarnow D, Dell J, Nagae L, Blaskey L, Solot C, Levy SE, Berman JI, Edgar JC. Left hemisphere diffusivity of the arcuate fasciculus: influences of autism spectrum disorder and language impairment. AJNR Am J Neuroradiol. 2014;35(3):587–92. doi: 10.3174/ajnr.A3754. PubMed PMID: 24335547; PMCID: PMC3970288.
  249. Lu C, Qi Z, Harris A, Weil LW, Han M, Halverson K, Perrachione TK, Kjelgaard M, Wexler K, Tager-Flusberg H, Gabrieli JD. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1(2):169–77. doi: 10.1016/j.bpsc.2015.11.001. PubMed PMID: 26949750; PMCID: PMC4776338.
  250. Fuertinger S, Horwitz B, Simonyan K. The Functional Connectome of Speech Control. PLoS Biol. 2015;13(7):e1002209. doi: 10.1371/journal.pbio.1002209. PubMed PMID: 26204475; PMCID: PMC4512708.
  251. Behroozmand R, Shebek R, Hansen DR, Oya H, Robin DA, Howard MA, 3rd, Greenlee JD. Sensory-motor networks involved in speech production and motor control: an fMRI study. Neuroimage. 2015;109:418–28. doi: 10.1016/j.neuroimage.2015.01.040. PubMed PMID: 25623499; PMCID: PMC4339397.
  252. Lametti DR, Rochet-Capellan A, Neufeld E, Shiller DM, Ostry DJ. Plasticity in the human speech motor system drives changes in speech perception. J Neurosci. 2014;34(31):10339–46. doi: 10.1523/JNEUROSCI.0108–14.2014. PubMed PMID: 25080594; PMCID: PMC4115140.
  253. Simmonds AJ, Leech R, Collins C, Redjep O, Wise RJ. Sensory-motor integration during speech production localizes to both left and right plana temporale. J Neurosci. 2014;34(39):12963–72. doi: 10.1523/JNEUROSCI.0336–14.2014. PubMed PMID: 25253845; PMCID: PMC4172797.
  254. Simonyan K, Fuertinger S. Speech networks at rest and in action: interactions between functional brain networks controlling speech production. J Neurophysiol. 2015;113(7):2967–78. doi: 10.1152/jn.00964.2014. PubMed PMID: 25673742; PMCID: PMC4416556.
  255. Correia JM, Jansma BM, Bonte M. Decoding Articulatory Features from fMRI Responses in Dorsal Speech Regions. J Neurosci. 2015;35(45):15015–25. doi: 10.1523/JNEUROSCI.0977–15.2015. PubMed PMID: 26558773.
  256. Humphries C, Sabri M, Lewis K, Liebenthal E. Hierarchical organization of speech perception in human auditory cortex. Front Neurosci. 2014;8:406. doi: 10.3389/fnins.2014.00406. PubMed PMID: 25565939; PMCID: PMC4263085.
  257. Hurschler MA, Liem F, Oechslin M, Stampfli P, Meyer M. fMRI reveals lateralized pattern of brain activity modulated by the metrics of stimuli during auditory rhyme processing. Brain Lang. 2015;147:41–50. doi: 10.1016/j.bandl.2015.05.004. PubMed PMID: 26025759.
  258. Leaver AM, Rauschecker JP. Functional Topography of Human Auditory Cortex. J Neurosci. 2016;36(4):1416–28. doi: 10.1523/JNEUROSCI.0226–15.2016. PubMed PMID: 26818527; PMCID: PMC4728734.
  259. Mesgarani N, Chang EF. Selective cortical representation of attended speaker in multi-talker speech perception. Nature. 2012;485(7397):233–6. doi: 10.1038/nature11020. PubMed PMID: 22522927; PMCID: PMC3870007.
  260. Nourski KV, Brugge JF, Reale RA, Kovach CK, Oya H, Kawasaki H, Jenison RL, Howard MA, 3rd. Coding of repetitive transients by auditory cortex on posterolateral superior temporal gyrus in humans: an intracranial electrophysiology study. J Neurophysiol. 2013;109(5):1283–95. doi: 10.1152/jn.00718.2012. PubMed PMID: 23236002; PMCID: PMC3602837.
  261. Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA, 3rd. Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage. 2014;101:598–609. doi: 10.1016/j.neuroimage.2014.07.004. PubMed PMID: 25019680; PMCID: PMC4430832.
  262. Sedley W, Gander PE, Kumar S, Kovach CK, Oya H, Kawasaki H, Howard MA, Griffiths TD. Neural signatures of perceptual inference. Elife. 2016;5. doi: 10.7554/eLife.11476. PubMed PMID: 26949254; PMCID: PMC4841773.
  263. Sammler D, Grosbras MH, Anwander A, Bestelmeyer PE, Belin P. Dorsal and Ventral Pathways for Prosody. Curr Biol. 2015;25(23):3079–85. doi: 10.1016/j.cub.2015.10.009. PubMed PMID: 26549262.
  264. Weisberg J, McCullough S, Emmorey K. Simultaneous perception of a spoken and a signed language: The brain basis of ASL-English code-blends. Brain Lang. 2015;147:96–106. doi: 10.1016/j.bandl.2015.05.006. PubMed PMID: 26177161.
  265. Beal DS, Gracco VL, Brettschneider J, Kroll RM, De Nil LF. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter. Cortex. 2013;49(8):2151–61. doi: 10.1016/j.cortex.2012.08.013. PubMed PMID: 23140891; PMCID: PMC3617061.
  266. Chang SE, Zhu DC. Neural network connectivity differences in children who stutter. Brain. 2013;136(Pt 12):3709–26. doi: 10.1093/brain/awt275. PubMed PMID: 24131593; PMCID: PMC3859219.
  267. Chang SE, Zhu DC, Choo AL, Angstadt M. White matter neuroanatomical differences in young children who stutter. Brain. 2015;138(Pt 3):694–711. doi: 10.1093/brain/awu400. PubMed PMID: 25619509; PMCID: PMC4339778.
  268. Neef NE, Anwander A, Friederici AD. The Neurobiological Grounding of Persistent Stuttering: from Structure to Function. Curr Neurol Neurosci Rep. 2015;15(9):63. doi: 10.1007/s11910–015–0579–4. PubMed PMID: 26228377.
  269. Kirke DN, Battistella G, Kumar V, Rubien-Thomas E, Choy M, Rumbach A, Simonyan K. Neural correlates of dystonic tremor: a multimodal study of voice tremor in spasmodic dysphonia. Brain Imaging Behav. 2016. doi: 10.1007/s11682–016–9513–x. PubMed PMID: 26843004.
  270. Simonyan K, Berman BD, Herscovitch P, Hallett M. Abnormal striatal dopaminergic neurotransmission during rest and task production in spasmodic dysphonia. J Neurosci. 2013;33(37):14705–14. doi: 10.1523/JNEUROSCI.0407–13.2013. PubMed PMID: 24027271; PMCID: PMC3771037.
  271. Termsarasab P, Ramdhani RA, Battistella G, Rubien-Thomas E, Choy M, Farwell IM, Velickovic M, Blitzer A, Frucht SJ, Reilly RB, Hutchinson M, Ozelius LJ, Simonyan K. Neural correlates of abnormal sensory discrimination in laryngeal dystonia. Neuroimage Clin. 2016;10:18–26. doi: 10.1016/j.nicl.2015.10.016. PubMed PMID: 26693398; PMCID: PMC4660380.
  272. Mesulam MM, Weintraub S, Rogalski EJ, Wieneke C, Geula C, Bigio EH. Asymmetry and heterogeneity of Alzheimer's and frontotemporal pathology in primary progressive aphasia. Brain. 2014;137(Pt 4):1176–92. doi: 10.1093/brain/awu024. PubMed PMID: 24574501; PMCID: PMC3959558.
  273. Mirman D, Chen Q, Zhang Y, Wang Z, Faseyitan OK, Coslett HB, Schwartz MF. Neural organization of spoken language revealed by lesion-symptom mapping. Nat Commun. 2015;6:6762. doi: 10.1038/ncomms7762. PubMed PMID: 25879574; PMCID: PMC4400840.
  274. Kiran S, Meier EL, Kapse KJ, Glynn PA. Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Front Hum Neurosci. 2015;9:316. doi: 10.3389/fnhum.2015.00316. PubMed PMID: 26106314; PMCID: PMC4460429.
  275. Tsui PH, Wan YL, Chen CK. Ultrasound imaging of the larynx and vocal folds: recent applications and developments. Curr Opin Otolaryngol Head Neck Surg. 2012;20(6):437–42. doi: 10.1097/MOO.0b013e32835896b4. PubMed PMID: 23000732.
  276. Lewis BA, Freebairn L, Tag J, Ciesla AA, Iyengar SK, Stein CM, Taylor HG. Adolescent outcomes of children with early speech sound disorders with and without language impairment. Am J Speech Lang Pathol. 2015;24(2):150–63. doi: 10.1044/2014_AJSLP–14–0075. PubMed PMID: 25569242; PMCID: PMC4477798.
  277. Rice ML, Hoffman L. Predicting vocabulary growth in children with and without specific language impairment: a longitudinal study from 2;6 to 21 years of age. J Speech Lang Hear Res. 2015;58(2):345–59. doi: 10.1044/2015_JSLHR–L–14–0150. PubMed PMID: 25611623; PMCID: PMC4398600.
  278. Ellis Weismer S, Kover ST. Preschool language variation, growth, and predictors in children on the autism spectrum. J Child Psychol Psychiatry. 2015;56(12):1327–37. doi: 10.1111/jcpp.12406. PubMed PMID: 25753577; PMCID: PMC4565784.
  279. Tager-Flusberg H. Risk Factors Associated With Language in Autism Spectrum Disorder: Clues to Underlying Mechanisms. J Speech Lang Hear Res. 2016;59(1):143–54. doi: 10.1044/2015_JSLHR–L–15–0146. PubMed PMID: 26502110; PMCID: PMC4867927.
  280. Woynaroski T, Watson L, Gardner E, Newsom CR, Keceli-Kaysili B, Yoder PJ. Early Predictors of Growth in Diversity of Key Consonants Used in Communication in Initially Preverbal Children with Autism Spectrum Disorder. J Autism Dev Disord. 2016;46(3):1013–24. doi: 10.1007/s10803–015–2647–7. PubMed PMID: 26603885; PMCID: PMC4747804.
  281. Elsabbagh M, Hohenberger A, Campos R, Van Herwegen J, Serres J, de Schonen S, Aschersleben G, Karmiloff-Smith A. Narrowing perceptual sensitivity to the native language in infancy: exogenous influences on developmental timing. Behav Sci (Basel). 2013;3(1):120–32. doi: 10.3390/bs3010120. PubMed PMID: 25379229; PMCID: PMC4217615.
  282. Berken JA, Chai X, Chen JK, Gracco VL, Klein D. Effects of Early and Late Bilingualism on Resting-State Functional Connectivity. J Neurosci. 2016;36(4):1165–72. doi: 10.1523/JNEUROSCI.1960–15.2016. PubMed PMID: 26818505.
  283. Krizman J, Tierney A, Fitzroy AB, Skoe E, Amar J, Kraus N. Continued maturation of auditory brainstem function during adolescence: A longitudinal approach. Clin Neurophysiol. 2015;126(12):2348–55. doi: 10.1016/j.clinph.2015.01.026. PubMed PMID: 25801342; PMCID: PMC4550576.
  284. Perez CA, Engineer CT, Jakkamsetti V, Carraway RS, Perry MS, Kilgard MP. Different timescales for the neural coding of consonant and vowel sounds. Cereb Cortex. 2013;23(3):670–83. doi: 10.1093/cercor/bhs045. PubMed PMID: 22426334; PMCID: PMC3563339.
  285. Lungova V, Verheyden JM, Herriges J, Sun X, Thibeault SL. Ontogeny of the mouse vocal fold epithelium. Dev Biol. 2015;399(2):263–82. doi: 10.1016/j.ydbio.2014.12.037. PubMed PMID: 25601450; PMCID: PMC4352410.
  286. Patel R, Donohue KD, Unnikrishnan H, Kryscio RJ. Kinematic measurements of the vocal-fold displacement waveform in typical children and adult populations: quantification of high-speed endoscopic videos. J Speech Lang Hear Res. 2015;58(2):227–40. doi: 10.1044/2015_JSLHR–S–13–0056. PubMed PMID: 25652615; PMCID: PMC4675116.
  287. Patel R, Dubrovskiy D, Dollinger M. Characterizing vibratory kinematics in children and adults with high-speed digital imaging. J Speech Lang Hear Res. 2014;57(2):S674–86. doi: 10.1044/2014_JSLHR–S–12–0278. PubMed PMID: 24686982.
  288. Branco A, Rodrigues SA, Fabro AT, Fonseca-Alves CE, Martins RH. Hyaluronic acid behavior in the lamina propria of the larynx with advancing age. Otolaryngol Head Neck Surg. 2014;151(4):652–6. doi: 10.1177/0194599814544673. PubMed PMID: 25096358.
  289. Branco A, Todorovic Fabro A, Goncalves TM, Garcia Martins RH. Alterations in extracellular matrix composition in the aging larynx. Otolaryngol Head Neck Surg. 2015;152(2):302–7. doi: 10.1177/0194599814562727. PubMed PMID: 25645525.
  290. Martins RH, Benito Pessin AB, Nassib DJ, Branco A, Rodrigues SA, Matheus SM. Aging voice and the laryngeal muscle atrophy. Laryngoscope. 2015;125(11):2518–21. doi: 10.1002/lary.25398. PubMed PMID: 26154530.
  291. Moore J, Thibeault S. Insights into the role of elastin in vocal fold health and disease. J Voice. 2012;26(3):269–75. doi: 10.1016/j.jvoice.2011.05.003. PubMed PMID: 21708449; PMCID: PMC3190022.
  292. Roberts T, Morton R, Al-Ali S. Microstructure of the vocal fold in elderly humans. Clin Anat. 2011;24(5):544–51. doi: 10.1002/ca.21114. PubMed PMID: 21647958.
  293. NIDCD. Spasmodic Dysphonia Fact Sheet 2020.

* Note: PDF files require a viewer such as the free Adobe Reader.

Last Updated Date: 
August 8, 2017