Skip to main content
Text Size: sML

Priority Areas in Hearing and Balance Research

On this page:

Priority Area 1

Understanding Normal Function

  • Development of the Auditory and Vestibular System: Identify the molecules and genes involved in development of the peripheral and central auditory and vestibular pathways. Understand how auditory neurons recognize and establish tonotopic organization.
  • Homeostasis and Microenvironment: Increase understanding of homeostasis in the inner ear (e.g., ionic composition and maintenance, inflammatory response and toxin elimination, blood-labyrinth barrier, microcirculation, hormonal and other control systems) and in the middle ear (e.g., gas exchange, fluid regulation, innate immunity, and gene expression).
  • Mechanics: Expand knowledge of mechanics in the cochlea (e.g., interaction of hair cell membranes and sterocilia with supporting structures); in the middle ear (e.g., resolve important issues of middle ear mechanics, including tympanic membrane/ossicular coupling and the role of non-piston-like modes of stapes motion); and in the vestibular system (e.g., cupular and otolithic maintenance of posture and equilibrium).
  • Sensory Cell Transduction: Identify the molecular constituents of hair cell transduction: nanomechanical properties, molecular motors in hair cell membranes and stereocilia, ion channels and pumps; and their integration for hair cell tuning and maintenance.
  • Cochlear Amplification: Identify molecular determinants responsible for the biophysical traits that influence amplification, including the basis of its fast kinetics; delineate roles of stereociliar vs. somatic mechanisms in mammalian cochlear amplification; determine roles of amplification in low and high frequency regions of the cochlea; refine mathematical models of amplification and outer hair cell function.
  • Functional Connectivity: Clarify how afferent and efferent neural circuits process auditory and vestibular peripheral input. Understand how coding schemes influence plasticity and enable attention, cognition, and stress. Incorporate advanced techniques of functional and structural neural imaging and connectivity, ranging from molecular to systems scale.
  • Perception:
    • Auditory System: Determine how sound detection, discrimination, and recognition interact with learning, memory, and attention as well as with vision, tactile sensation, and balance to better understand auditory perception in real-world listening environments.
    • Vestibular System: Determine how vestibular, visual, and proprioceptive (the sensing of motion or position) systems interact to perceive space and motion and to maintain orientation.

Priority Area 2

Understanding Diseases and Disorders

  • Epidemiology: Investigate natural history; genetic and environmental risk factors; racial, ethnic, and gender differences; and practical objective metrics for subpopulations to inform the development of evidence-based treatment strategies. Explore how complex comorbidities create differences in disease phenotypes and treatment outcomes.
  • Inherited Disorders: Identify gene mutations responsible for congenital and age-related deficits, understand structural consequences of such mutations, and develop high-throughput platforms for testing individuals. Understand how specific mutations relate to the severity and progression of disease. Investigate protein function to inform better prevention and treatment strategies.
  • Otitis Media: Improve understanding of susceptibility and pathogenesis related to genetics, prior upper respiratory infection, eustachian tube dysfunction and reflux, bacterial biofilms, polymicrobial infections, inflammatory dysregulation, and mucosal hyperplasia. Define immune pathways for effective middle ear protection by vaccines. Determine impact of vaccination on disease prevalence and infection by other microbes.
  • Inflammatory and Autoimmune Responses of the Inner Ear: Identify and characterize first responders to injury in the inner ear. Determine how molecules and cells cross the blood-labyrinth barriers to initiate immune response and autoimmune disease. Identify genetic and epigenetic risk factors. Investigate innate and cognate immunity in resolution of OM.
  • Tinnitus: Develop new animal models to understand the specific neural deficits responsible for tinnitus.
  • Other Acquired Disorders: Improve understanding of the pathogenesis of noise-induced, traumatic, idiopathic, ototoxic, neurotoxic, metabolic, and non-hereditary degenerative auditory and vestibular dysfunction. Improve delineation of the multiple processes resulting in presbycusis. Relate molecular, cellular, and structural (e.g., temporal bone research) otopathology to the clinical progress of disease.
  • Pathways and Damage: Determine how the peripheral and central auditory and vestibular pathways are reorganized following injury. Define the long-term changes resulting from early sensory loss. Identify molecular, genetic, and anatomical underpinnings of plasticity. Relate functional deficits to specific lesions in the pathways.
  • Changes in Perception with Disease:
    • Auditory System: Identify sources of variance contributing to large individual differences in response to similar intervention strategies among people with hearing loss. Improve understanding of the time course, sensitive periods, and complications of hearing loss.
    • Vestibular System: Understand how disease affects perception of motion and spatial orientation, including connections with limbic and autonomic systems.

Priority Area 3

Improving Diagnosis, Treatment, and Prevention

  • Regeneration: Develop in vitro systems to identify genes and factors that promote regeneration of specific cellular phenotypes (e.g., hair cells, supporting cells, spiral ganglion neurons, cells of the stria vascularis); understand factors that regulate hair cell regeneration; and determine which genes and extracellular factors control cell-specific differentiation.
  • Pharmacotherapeutics: Develop targeted delivery of viral vectors for gene therapy and site-specific, controlled, sustained molecular therapy for both developing and dysfunctional pathways. Develop therapies to improve neuronal stimulation, resist cell damage, and enhance cell repair.
  • Tinnitus: Apply advanced imaging techniques to provide measures of changed neural activity in people with tinnitus. Identify pharmacologic agents to prevent tinnitus resulting from traumatic, ototoxic, degenerative, and other acquired disorders. Identify behavioral, pharmacological, surgical, and device-based treatments for improving tinnitus.
  • Otitis Media: Develop polyvalent vaccines for polymicrobial middle ear infection. Develop new drug delivery systems to the middle ear to prevent development of, enhance innate immunity to, and speed recovery from inflammation. Develop therapies to prevent and treat biofilms.
  • Interventions for Hearing Loss:
    • Examine existing and develop better aural rehabilitation strategies. Investigate how aural rehabilitation strategies are affected by treating comorbid conditions that influence success, such as dementia, diabetes, osteogenesis imperfecta, and stress.
    • Traditional (external) Hearing Aids: Improve device performance in background noise and other real-world settings.
    • Cochlear Implants: Improve efficacy of bilateral implants, short electrode implants, and hybrid cochlear implant/hearing aids in the same or opposite ear in conjunction with auditory/aural rehabilitation, assistive electronic devices, sign language, in home and educational environments. Improve prediction of outcome and maintenance of outcome over time.
    • Other Implants: Improve efficacy of partially and fully implantable middle ear devices, round window transducers, bone-anchored devices, ABI, and other brain implants.
  • Interventions for Dizziness and Balance Disorders:
    • Develop safer, better tolerated, and more effective pharmacological treatments for vertigo.
    • Develop vestibular prosthetic devices and minimally invasive surgery for better control of imbalance and vertigo while preserving hearing and other functions.
    • Develop improved behavioral approaches for the rehabilitation of chronic vestibulopathies.
    • Develop improved methods of systematic diagnosis and delineation of subtypes of dizziness/vertigo in order to identify subpopulations that might respond best to targeted therapies.
    • Understand post cochlear implantation dizziness and the connection with vestibular migraines.
  • Metrics:
    • Hearing Disorders: Develop metrics that better define functional hearing and communication abilities under real-world listening conditions; differentiate clinical subtypes of hearing disorders; identify early pathology in its preclinical stage; provide better measures of performance, communication skills, and disease-specific quality of life instruments for cochlear implant users; and improve assessment of the perception of, and reaction to, tinnitus.
    • Balance Disorders: Develop metrics for the perception of equilibrium, dizziness, vertigo, and spatial disorientation with emphasis on relationships among disequilibrium, emotional disabilities, and cognitive disabilities.
    • Identify common data elements to improve communication among scientists and clinicians across different specialties.
  • Management of Older Adults: Improve hearing loss management, including screening, treatment, and rehabilitation. Define the underserved population of older adults for hearing health care. Determine if early access to hearing health care changes health outcomes later in life. Develop and evaluate the effectiveness of screening methods. Reduce risk of falls in older adults due to imbalance. Develop assistive balance aids and training programs to augment stability and posture in the elderly.
  • Clinical Trials and Other Clinical Research Studies: Develop and implement infrastructure to identify 1) investigators with expertise in epidemiology, clinical trials, data registry, and other clinical research and 2) academic- and community- based clinical practice settings with geographic, racial, and ethnic diversity in order to facilitate rigorous, cost-effective clinical research and maximize human subjects protections.
  • Emerging Technologies (including Bioengineering, Nanotechnology, and Neural Prostheses): Capitalize on emerging scientific advances and technologies from nanoscience, biomedical engineering, and other areas to improve treatments and develop novel devices that support impaired function.
  • Training: Promote the cross training of basic scientists, clinician scientists, and physician scientists to facilitate the development of interdisciplinary research teams and to stimulate translational research.

Priority Area 4

Improving Outcomes for Human Communication

  • Hearing Health Care: Identify factors that influence a person’s motivation and perceived need for hearing health care. Examine the impact of organization, financing, and management of health care services on the delivery, cost, access to, and outcomes of services. Develop innovative delivery systems, including telehealth and the Internet, to increase awareness, access, and affordability. Identify cost-effective approaches for diagnosis and treatment.
  • Comparative Effectiveness Research and Evidence-Based Medicine: Through clinical trials and epidemiological comparative effectiveness research, identify best treatments for a given medical condition for a defined set of individuals. Develop and use clinical registries, clinical data networks, and other forms of electronic health data to inform the conscientious, explicit, and judicious use of current best evidence in making decisions about hearing health care options.
  • Implementation and Dissemination Research: Investigate effective implementation of “best practices” among health care providers to translate advances into routine community practice. Increase the effective dissemination of health information to the public to promote healthy behaviors.
  • Community-Based Participation in Research: Promote community-based research to identify factors that influence outcomes for people with hearing and balance disorders in diverse real-world settings. Engage deaf and HoH individuals in community-based research to aid in developing behavioral interventions to improve their quality of life. Develop methods to address communication disorders in diverse populations, considering variations in care and practice settings.